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Abstract

Trastuzumab is a monoclonal antibody frequently used to prevent the progression of

HER2+ breast cancers, which constitute approximately 20% of invasive breast cancers.

microRNAs (miRNAs) are small, non-coding RNA molecules that are known to be involved

in gene regulation. With their emerging roles in cancer, they are recently promoted as poten-

tial candidates to mediate therapeutic actions by targeting genes associated with drug

response. In this study we explored miRNA-mediated regulation of trastuzumab mecha-

nisms by identifying the important miRNAs responsible for the drug response via homoge-

nous network analysis. Our network model enabled us to simplify the complexity of miRNA

interactions by connecting them through their common pathways. We outlined the function-

ally relevant miRNAs by constructing pathway-based miRNA-miRNA networks in SKBR3

and BT474 cells, respectively. Identification of the most targeted genes revealed that trastu-

zumab responsive miRNAs favourably regulate the repression of targets with longer 3’UTR

than average considered to be key elements, while the miRNA-miRNA networks highlighted

central miRNAs such as hsa-miR-3976 and hsa-miR-3671 that showed strong interactions

with the remaining members of the network. Furthermore, the clusters of the miRNA-miRNA

networks showed that trastuzumab response was mostly established through cancer

related and metabolic pathways. hsa-miR-216b was found to be the part of the most power-

ful interactions of metabolic pathways, which was defined in the largest clusters in both cell

lines. The network based representation of miRNA-miRNA interactions through their shared

pathways provided a better understanding of miRNA-mediated drug response and could be

suggested for further characterization of miRNA functions.

Introduction

With at least 1.3 million new cases per year, breast cancer is the most frequently seen cancer

type among women worldwide. Despite the decreasing mortality rate in our decade, it is still a
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life threatening disease with different histological and molecular subtypes [1]. The majority of

poor clinical outcome is usually related to the development of metastasis with drug resistance,

which is mostly seen in HER2+ metastatic breast cancers [2,3]. So far, the humanized anti-

HER2 monoclonal antibody, trastuzumab (Herceptin), has been a key component used for the

treatment of HER2+ early stage cancers. However, the response rate to trastuzumab mono-

therapy is only around 35% and the development of resistance to the agent after the first year

of treatment is still an emerging problem[2,4]. As a result, identification of the mechanisms

underlying the trastuzumab antitumour activity still keeps its importance for the discovery of

new combinational and single agent therapies as well as the novel treatment strategies [4–6].

microRNAs (miRNAs) are endogenous small non-coding RNAs approximately 22 nucleo-

tides in length that play regulatory roles in gene expression by mediating mRNA cleavage or

translational repression [7]. A single miRNA can target several genes, more than a hundred

mRNAs in average. 60% of whole human protein coding genes are predicted to have miRNA-

binding sites in their 3’ untranslated regions (3’UTRs). Together with the number of identified

miRNAs running into thousands, they form one of the most abundant classes of the gene-reg-

ulatory systems in the cell [8]. Thus, any deregulation of the miRNAs might cause a major dis-

ruption in the gene regulation mechanisms of the cell that might even lead to the cancerous

phenotypes [9]. It has been shown that miRNAs are deregulated in breast cancer and various

types of other human cancers [10,11]. Since miRNAs might have effective roles in the progress

of diseases, they are likely to become potential therapeutic targets for cancer as well. A thera-

peutic benefit could be provided by modulating the expression levels of miRNAs in the disease

state [12]. A recent study has showed that level of miR-210 in plasma might be associated with

trastuzumab resistance in patients [13]. It was followed by other findings indicating the effect

of trastuzumab on the expression of miRNAs, however, these studies only have focused on the

oncogenic and tumor suppresor functions of the individual miRNAs in trastuzumab sensitive

or resistance cell lines [14–19]. Unfortunately they fail to explain the complexity of miRNA

mediated drug mechanisms due to the absence of information on the regulatory interaction

networks.

Network analysis is one of the widely adopted approaches to discover driver genes and

pathways in biological systems [20]. Recent studies have shown that miRNA networks have

synergistic roles in the regulation of pathological conditions. If two miRNAs interact with each

other in a network, they are more likely to regulate the pathways and target genes with similar

functions in the same disease [21–23]. Therefore, investigation of the interactions between

miRNAs on the network models might provide significant insights to explain the complex reg-

ulatory mechanisms in the drug treatment [24].

In this study, our aim was to uncover the underlying mechanisms of trastuzumab treatment

by elucidating the miRNA-regulatory networks in breast cancer cell lines. For this purpose, we

first performed a microarray miRNA profiling in trastuzumab treated cells (Geo Accession

Number: GSE104076)to find out responsive miRNAs. We constucted a miRNA-miRNA net-

work model that was capable of the visualization of functionally relevant miRNA pairs, where

miRNAs were represented as nodes and the edges represented the targeted pathways or biolog-

ical processes. The application of network analysis to trastuzumab responsive miRNAs

revealed the genes that were highly favored by the miRNAs, such as KSR2 (kinase suppressor

of ras 2); MDM4 (p53 regulator); UBE2W ubiquitin conjugating enzyme E2 W); CADM2 (cell

adhesion molecule 2); ARL15 (ADP ribosylation factor like GTPase 15). These genes were

known to involve in the regulation of MAPK signaling pahtway, cell cycle, metabolism of pro-

teins, cell-cell communication of cancer cells. Functionally relevant miRNA pairs were found

in the networks based on their shared pathways and biological processes, which helped us to

find out the prominent miRNA-mediated mechanisms in trastuzumab treatment. We suggest

miRNA networks in trastuzumab in breast cancer
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that uncovering the synergistic effects between miRNAs might deepen our knowledge about

their potential roles and their interacting molecular targets in the drug treatment and provide

new insights into the trastuzumab treatment in system-wide level.

Materials and methods

Cell lines and reagents

HER2+ breast cancer cell lines BT474 (HTB-20) representing Luminal B (ER+; PR+, HER2+;

ductal carcinoma) subtype and SKBR3 (HTB-30) representing HER2+ subtype (ER-; PR-;

HER2+; adenocarcinoma) of breast cancer were purchased from the American Type Culture

Collection (ATCC) [25,26], which were known to well characterized in previous studies and

decribed highly sensitive to trastuzumab treatment [27,28]. SKBR3 cells were maintained in

Mc Coy’s 5A medium (Lonza) with L-glutamine containing 10% fetal bovine serum (FBS), 1%

penicillin-streptomycin. BT474 cells were maintained in RPMI 1640 medium with L-gluta-

mine (Lonza) supplemented with 10% FBS, 1% penicillin-streptomycin and 2% bovine insulin.

The cell lines were cultured in a humidified air supplemented with 5% CO2 at 37˚C. Trastuzu-

mab was (kindly gifted by Prof. Dr. Hakan Gürdal from the Department of Pharmacology in

Medical School of Ankara University) dissolved in phosphate-buffered saline (PBS) (stock

concentration of 300 mg/mL) and stored at 4˚C.

WST-1 assay and trastuzumab treatment

The WST-1 assays (Roche Applied Science) were performed to see the sensitivity of the cells to

trastuzumab. The assays were maintained according to the manufacturer’s instructions. BT474

and SKBR3 cells were plated as 5x103 cells per well in 96-well plates. After 24 hours, the cells

were exposed to trastuzumab at different concentrations as 0.05, 0.1, 0.5, 2, 6, 30, 60, μg/ml

and they were kept in drug treatment for 6 days. The culture media containing trastuzumab

were replaced every 72 hours. On day 6, 10 μl of WST-1 reagent was added into each well.

After 2 hours of incubation at 37˚C, the absorbance at 450 nm was measured by a spectropho-

tometric reader (Perkin Elmer’s Victor Plate Reader). The half maximal inhibitory concentra-

tion (IC50) was calculated by using Graphpad Prism 6 Program.

For further experiments, SKBR3 and BT474 cells were plated at a starting density of 2 x 106

in 100 mm cell culture plates. BT474 and SKBR3 cells were treated with 6 μg/mL trastuzumab

and/or PBS as control within two biological replicates for 144 hours. The media were changed

in every 72 hours.

RNA isolation and miRNA profiling by microarray analysis

Total RNA was isolated with the TRIzol reagent (Invitrogen) according to the manufacturer’s

instructions. Absorption at 260 nm and 280 nm was measured for the determination of RNA

purity. The integrity of the RNAs was determined on the gel electrophoresis by checking out

the 18S/28S ribosomal RNA ratios. Hybridization was performed in Human miRNA Microar-

ray, Release 19.0, 8x60K (G4870A, Agilent Technologies) platform, which was an array

designed from miRBase version 19 containing 2006 miRNAs. Each miRNA sequence was rep-

resented by probes replicated at least 30 times on the array. Spike-in control solutions were

first prepared and total RNA (100 ng) from each sample was dephosphorylated with calf intes-

tine alkaline phosphatase at 37˚C for 30 min. It was followed by a denaturation step that

includes the incubation of samples in DMSO at 100˚C for 10 minutes. Samples were then

labeled with Cyanine3-pCp by using T4 RNA Ligase at 16˚C for 2 hours. They were mixed

with 10x blocking agent and 2x Hi-RPM hybridization buffer (Agilent Technologies), and
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hybridizations were performed at 55˚C with rotation at 20 rpm. After the washing step, the

arrays were scanned in Roche Nimblegen instrument by using Agilent Scan Control software.

The data were acquired using Agilent Feature Extraction software for miRNA microarray, gen-

erating a GeneView file that contained summarized signal intensities for each miRNA by sub-

tracting the background after combining the intensities of replicate probes.

Microarray data analysis

Two biological replicates were used for each treated and untreated cells. A total of 4 samples

from BT474 cells (2 from trastuzumab treated and 2 from PBS treated) and 4 samples from

SKBR3 cells (2 from trastuzumab treated and 2 from PBS treated) were analyzed. BRB Array

Tools 4.3.2. stable release was used for the normalization and statistical analysis. Bioconductor

packages were used for the normalization and statistical comparisons. The data were normal-

ized by Quantile normalization method [29]. The stastistical comparisons were done by using

t-test based class comparison function of BRB Array Tools, which is called “between group of

arrays (BGA)”. In order to find out the differential expressed miRNAs between the treated and

non-treated cell lines, p-value less than 0.05 and fold changes more than 2 were used as cut-off

values.

Target prediction of trastuzumab responsive miRNAs

Two different target prediction algorithms (DIANA-microT-CDS v5.0 and TargetScan v71)

were used for in silico target identification of the differentially upregulated and downregulated

miRNAs in both cell lines [30,31]. While DIANA-microT-CDS uses thermodynamic-based

algorithm, TargetScan relies on a seed complementarity model for the target prediction [32].

Target genes of each responsive miRNA were investigated in both databases. Top 200 of the

predicted targets were selected in TargetScan V7 and TargetScan V7.1, a cut-off value of 0.7

was applied to DIANA-microT-CDS database for the prediction of target genes. The intersec-

tion of the predicted targets from two algorithms were used to increase the sensivity of the tar-

get prediction [33]. The overlapping target genes were listed for further analysis.

Venny analysis

A Venn Diagram analysis; “Venny http://bioinfogp.cnb.csic.es/tools/venny/index.html” was

performed to determine the overlapping target gene sets, which were defined as common pre-

dicted targets in both DIANA-microT-CDS and Targetscan tools. The overlapping lists were

determined as the final target gene lists for each responsive miRNA.

Pathway enrichment analysis of the target genes

To better understand the functional characters of miRNA-miRNA pairs, a KEGG pathway

enrichment analysis was performed for the final target gene lists by using WebGestalt tool

[34,35]. The overlapping target gene list of each responsive candidate miRNA were uploaded

into the WebGestalt tool. As the default setting the minimum number of genes was adjusted to

2 from the list that was required for a pathway to be considered. The adjusted p-value of each

enriched pathway was calculated with the method of Benjamini and Hockberg and the statisti-

cally enriched pathways were obtained using hypergeometric test (p-value< 0.05). To con-

struct the networks, KEGG pathway terms were used and they were collected in a list (e.g.

Metabolic pathways—hsa01100).

miRNA networks in trastuzumab in breast cancer
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Network construction

The networks presented in this study were built by using trastuzumab responsive miRNA pro-

filing data acquired from our study (Geo Accession Number: GSE104076). For the construc-

tion of the networks, we classified the trastuzumab responsive miRNAs in two groups as

“responsive miRNAs in SKBR3” and “responsive miRNAs in BT474”. To find out the func-

tional features of miRNA pairs, a pathway enrichment analysis was performed using the final

target gene lists and they were used to connect the miRNA pairs in the network.

For each miRNA pair, the corresponding significance value was calculated using hypergeo-

metric distribution [36].

P ¼ 1 �
Xx� 1

i¼0

ð
m
i Þð

N� m
n� i Þ

ð
N
n Þ

where N was the total number of genes/pathways, n was the number of genes/pathways that

were regulated by one responsive miRNA, m was the number of genes/pathways that were reg-

ulated by the other miRNA, and x was equal to the number of common genes/pathways for

both miRNAs. The miRNA pairs were considered as significant and included into the network

if their p-value was p<0.05. In the pathway-based analysis N was set to the number of KEGG

pathways (400 pathways) and in the gene-based analysis N was set to the number genes in the

WebGestalt NCBI Gene data source (28.000 genes).

The networks were created in the form of interaction lists in which each line represented an

interaction between two miRNAs, including the type and the weight of the interaction. Visual

Studio 2010 was used to implement the proposed network models. Cytoscape Version 3.2.0

[37] was used to visualize and analyze the networks. To identify central nodes with high

degrees, Network analyzer plugin of Cytoscape was utilized. The most central node of the net-

work indicated the node with the most interaction in terms of degree and the size of the nodes

represented their degree values (degree centralities). The upregulated miRNAs were visualized

as red nodes whereas the downregulated miRNAs were visualized as green nodes.

The networks presented in this study were designed as homogenous networks to define the

relationships of functionally relevant miRNAs. The miRNA-miRNA network model was

inspired from a recent study where the proteins were connected to each other through their

shared ligands to construct a protein-protein network [38]. Similarly, we built a miRNA-

miRNA interaction network by linking miRNAs through their shared enriched pathways or

biological processes.

In our model, the nodes of the network represented miRNAs and the edges were either the

shared biological processes or pathways between a pair of miRNAs. Each edge in the network

had a weight indicating the number of the shared features. For instance; two virtual miRNAs;

miRNA X and miRNA Y were used to figure out their functional roles. miRNA X was known

to relate with the pathways P1 and P2; miRNA Y, on the other hand, was related to the path-

ways P2, P5 and P8. The pathway based network model allowed us to connect miRNA X and

miRNA Y through their common pathway P2. The weight of the edge between miRNA X and

miRNA Y was equal to one, since they only shared a single pathway (Fig 1). Through the net-

work analysis the most targeted genes were also determined based on the total number of miR-

NAs regulating them in the network.

Clustering of the trastuzumab responsive miRNA-miRNA pairs in the pathway based

network models. Cluster analysis of the network reveals cliques of nodes that we expect to

have similar properties since they are tightly connected. In this study, we performed the cluster

analysis using “Clustermaker2” plugin of Cytoscape [39]. Since the networks were imple-

mented as undirected weighted networks, the sub-miRNAs or cliques were found out by

miRNA networks in trastuzumab in breast cancer
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“Markov Cluster (MCL) Algorithm” to figure out the contribution of edges and the power of

links between their interacted nodes [40]. An automatic edge threshold was applied to the net-

work to get more specific cluster families.

Functional validation of the most targeted genes

A functional validation was performed with the top targeted gene sets in the networks to

understand whether they were related to breast cancer or not. The validation was done using

The Cancer Genome Atlas (TCGA) Breast Cancer gene expression dataset (Agi-

lentG4502A_07_3 array), which was provided to access publicly as a part of the UCSC Cancer

Genome Browser [41]. This dataset uses the log2 lowess normalized ratio of sample signal to

reference signal (cy5/cy3) collapsed for each gene. The top 30 targeted genes of responsive

miRNAs in BT474 and SKBR3 cells were searched for their expression values in TCGA Breast

Cancer data sets by using “UCSC Xena http://xena.ucsc.edu” program.

Statistical analysis

We performed the statistical analyses with Graphpad Prism 6, Microsoft Excel 2010, Visual

Basic 2010 and BRB Array Tools 4.3.2. programs. The half maximal inhibitory concentration

(IC50) was calculated by using dose-response curves in Graphpad Prism 6 Program. A two

sample t-test was used to determine the differentially expressed miRNAs in microarray profil-

ing by using BRB Array Tools 4.3.2. release. The significances of the miRNA networks were

found out by using a hypergeometric distribution and P-value<0.05 was defined as the cut-off

value for the significant miRNA interactions.

Results

Trastuzumab responsive miRNAs in SKBR3 and BT474 cell lines

131 upregulated and 134 downregulated miRNAs were identified in BT474 cells, while 104

upregulated and 98 downregulated miRNAs were found to be differentially expressed in

SKBR3 cells (Table 1) (S1 Table and S1 and S2 Figs). The differentially expressed miRNAs

were described as “responsive miRNAs” in the trastuzumab treatment (S1 Table). miRNAs

that did not have the overlapped predicted target lists obtained by both DIANA-microT-CDS

and TargetScan tools or miRNAs had the intersected targets but did not show functional

enrichment in any pathway or biological process were omitted from the data source. 57

Fig 1. An example of the network model in the study. miRNA X was known to target the pathways P1 and

P2; miRNA Y, on the other hand, was related to the pathways P2, P5 and P8. The pathway based network

model helped us to connect miRNA X and miRNA Y through their common pathway P2. The weight of the

edge between miRNA X and miRNA Y was set to be one, since they shared one single pathway. The

corresponding significance value was calculated using hypergeometric distribution for each miRNA pair. The

less significant miRNA pairs with p-value larger than 0.05 were filtered out of the network.

https://doi.org/10.1371/journal.pone.0185558.g001
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Table 1. 20 responsive miRNAs with the greatest difference in expression levels in trastuzumab treated SKBR3 and BT474 cell lines.

MicroRNA ID Gmean BT474 Trastuzumab Gmean BT474 PBS Fold-change p-value*

hsa-miR-34c-3p 76.9 10 7.69 0.000495

hsa-miR-588 85.79 14.4 5.96 0.001264

hsa-miR-580 58.94 10 5.89 0.001384

hsa-miR-374a-3p 175.49 29.84 5.88 0.001392

hsa-miR-616-3p 62.19 10.83 5.74 0.001721

hsa-miR-3124-3p 166.41 29.76 5.59 0.002031

hsa-miR-5088 307.06 56.29 5.46 0.002344

hsa-miR-541-5p 97.02 19.1 5.08 0.00259

hsa-miR-493-3p 83.25 16.82 4.95 0.002595

hsa-miR-551b-5p 83.11 17.34 4.79 0.002642

hsa-miR-466 33.72 299.95 -8.90 0.048349

hsa-miR-5692a 12.15 102.61 -8.45 0.049597

hsa-miR-99a-3p 18.39 123.48 -6.71 0.049275

hsa-miR-379-3p 29.91 200.03 -6.69 0.049586

hsa-miR-3671 11.07 62.79 -5.67 0.048871

hsa-miR-937-3p 13.98 77.8 -5.57 0.048947

hsa-miR-876-5p 16.9 89.68 -5.31 0.048314

hsa-miR-1228-5p 17.77 90.27 -5.08 0.048149

hsa-miR-300 20.41 102.78 -5.04 0.04733

hsa-miR-6502-3p 19.4 97.29 -5.01 0.047564

MicroRNA ID Gmean SKBR3 Trastuzumab Gmean SKBR3 PBS Fold-change p-value*

hsa-miR-580 185.53 11.47 16.18 0.003577

hsa-miR-338-5p 125.93 11.94 10.54 0.005305

hsa-miR-5196-5p 215.5 24.32 8.86 0.00041

hsa-miR-4768-3p 129.57 16.88 7.68 0.001565

hsa-miR-92b-5p 78.06 10.56 7.39 0.004378

hsa-miR-4754 199.53 27.21 7.33 0.001553

hsa-miR-890 67.76 10.02 6.76 0.004637

hsa-miR-6716-5p 97.1 15.48 6.27 0.008135

hsa-miR-613 149.1 23.91 6.24 0.035063

hsa-miR-5090 527.56 85.64 6.16 0.001562

hsa-miR-200a-3p 24.74 520.28 -21.03 0.041457

hsa-miR-339-3p 43.85 763.4 -17.41 0.004607

hsa-miR-345-5p 18.87 296.55 -15.72 0.001076

hsa-miR-19a-5p 24.05 233.07 -9.69 0.030978

hsa-miR-4760-5p 11.64 108.72 -9.34 0.021372

hsa-miR-3684 20.84 162.31 -7.79 0.002313

hsa-miR-190a 34.15 254.61 -7.46 0.043939

hsa-miR-514a-5p 20.39 139.41 -6.84 0.001464

hsa-miR-3976 25.61 161.05 -6.29 0.028377

hsa-miR-10b-5p 39.53 239.88 -6.07 0.008059

Gmean BT474 trastuzumab and BT474 PBS, Geometric mean values of signal intensities in trastuzumab and PBS treated BT474 cell lines; Gmean SKBR3

trastuzumab and SKBR3 PBS, Geometric mean values of signal intensities in trastuzumab and PBS treated SKBR3 cell lines

*p-values calculated using a two sample ttest (random variance model).

https://doi.org/10.1371/journal.pone.0185558.t001
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miRNAs were omitted from BT474 dataset, while 49 miRNAs were omitted from SKBR3 data-

set (S2 Table).

By omitting aforementioned miRNAs we obtained a final list of 208 miRNAs in BT474 cells

and 153 miRNAs in SKBR3 cells for the construction of the networks (S3 Table).

Network analysis

First, less significant miRNA pairs with p-values larger than 0.05 were filtered based on the

hypergeometric distribution. Then the final datasets with more significant miRNA pairs were

used for the network construction. The networks were constructed for BT474 cell line and

SKBR3 cell line, respectively. Each network comprised the upregulated and downregulated

responsive miRNAs together. Table 2 illustrates the detailed information about the final data

sets including the number of statistically significant miRNAs as well as the number of total

unique genes and pathways that those miRNAs were related to.

Degree centrality helped us to identify the most important nodes in the network in terms of

number of interactions, which were defined based on the shared pathways or biological pro-

cesses that they were involved in while the most targeted genes by miRNAs were identified

based on their frequencies in the networks. Cluster analyses enabled us to focus on the func-

tionally relevant miRNA pairs and their interactions.

Identification of the most targeted genes may reveal potential key players in miRNA-

regulatory mechanisms. 4140 genes were found to be targeted by at least two miRNAs in

BT474 cells, while 2433 genes were targeted in SKBR3 cells. The most targeted gene in trastu-

zumab treated BT474 cells was FAM9C, which was predicted to be targeted by 19 different

miRNAs. It was followed by SAMD12 and UBE2W which were potentially regulated by 16

miRNAs and 15 miRNAs, respectively. Among the top 30 targeted genes, MDM4 (p53 regula-

tor), CAMD2 (cell adhesion molecule), KSR2 (kinase suppressor 2 of RAS) and EREG (epire-

gulin) were the most prominent targets that have important roles in the tumor development.

In trastuzumab treated SKBR3 cells, SAMD12 was also one of the most targeted genes,

which was potentially regulated by 12 miRNAs. ARL15 and TFRC were the following ones

with 10 miRNAs. PFN2 (profilin 2), BTG1 (BTG anti-proliferation factor 1), LPP (LIM

domain containing preferred translocation partner in lipoma) and CDK6 (cyclin dependent

kinase 6) came to prominence as significant genes that have important effects in the cancer

progression (Table 3).

Recent studies indicate that targets with longer 3’UTR than average are tend to be more

evolutionarily conserved and they might be key hub genes in the regulation of miRNAs

[24,42]. Hence, we investigated our most targeted genes for the length of their target sites by

using TargetScan to confirm their potential of being prominent targets in the regulation of

trastuzumab responsive miRNAs. Indeed, majority of the genes with the highest frequency in

the networks were found to have longer miRNA target sites than average (Table 4).

In addition, we searched for the expression values of each target gene in breast cancer by

using The Cancer Genome Atlas (TCGA) Breast Cancer gene expression dataset (Agi-

lentG4502A_07_3 array) [41]. It included 1247 samples in total. Most of the target genes were

defined to be differentially expressed in breast cancer. 6 out of 30 most frequent genes in

SKBR3 cells were found to be significantly upregulated or downregulated in different breast

cancer subtypes (Fig 2A), while 8 out of 30 most frequent genes in BT474 were defined to be

differentially expressed in TCGA breast cancer data (Fig 2B).

The pathway based miRNA-miRNA networks in SKBR3 and BT474 cells indicate func-

tionally related miRNA pairs. In trastuzumab treated SKBR3 cells, 146 pathways were tar-

geted by at least two miRNAs. These pathways connected 73 miRNAs with each other. hsa-
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miR-3976 was one of the most central nodes together with hsa-miR-548b-5p and hsa-miR-

3194-5p in the network with the degree centrality scores of 9 and 8 (Table 5) (S4 Table). The

downregulated and upregulated miRNAs equally contributed to the most central nodes (Fig

3). We also identified hsa-miR-3976, hsa-miR-190a and hsa-miR-10b-5p among the top

responsive miRNAs with the greatest difference in expression levels according to microarray

profiling in trastuzumab treated SKBR3 cells (Table 1).

Table 2. Detailed information of the pathway based miRNA-miRNA network dataset in the trastuzumab treated BT474 and SKBR3 cell lines.

Data Total number of the interacting miRNAs in the

network

Total number of the enriched/shared

pathways*
Total number of the shared target

genes*

BT474 150 152 4140

SKBR3 73 146 2433

*Shared genes/pathways by at least two miRNAs

https://doi.org/10.1371/journal.pone.0185558.t002

Table 3. Top 30 genes targeted by responsive miRNAs in trastuzumab treated BT474 and SKBR3 cells that were used for the functional validation.

Gene ID Gene Frequency in BT474* Gene ID Gene Frequency in SKBR3*

FAM9C 19 SAMD12 12

SAMD12 16 TFRC 10

UBE2W 15 ARL15 10

CCDC38 13 CLLU1 9

MDM4 13 CADM2 9

CADM2 13 LPP 9

KSR2 13 PFN2 8

CLLU1 13 STC1 8

INO80D 13 TMEM154 8

TFRC 12 KLF12 8

FZD3 12 BTG1 8

OSTN 12 C22ORF46 8

CYP3A5 12 RAB27B 8

LPP 12 GNG12 8

FAM222B 11 IMPG1 8

TMEM212 11 REEP3 7

GABRA4 11 MLANA 7

PI15 11 PI15 7

BTLA 11 PRPF38A 7

ZFP36L1 11 DST 7

GYPA 11 C9ORF170 7

RAB30 11 FAM9C 7

CHTF8 10 YWHAG 7

EREG 10 CDK6 7

ZNF286B 10 FAM169A 7

CYB561D1 10 CPLX2 7

ZNF676 10 RAB3B 7

ZNF680 10 S100A7A 7

C5ORF28 10 C16ORF87 7

GNG12 9 TMEM170B 7

* Gene frequency; total number of the potential miRNAs that might target the particular gene seen in the networks

https://doi.org/10.1371/journal.pone.0185558.t003
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In trastuzumab treated BT474 cells, 152 pathways were targeted by at least two miRNAs.

150 miRNAs were significantly interacted in the network. Majority of the nodes were defined

to have higher degree centralities compared to SBKR3 network, which showed that the respon-

sive miRNAs involved with certain biological processes in larger numbers and they were

tightly interacted with each other in BT474 cells (Fig 4). hsa-miR-3671 was the most central

node with the degree score of 19. It was followed by hsa-miR-4474-5p with the score of 16 and

hsa-miR-559 with the score of 15 (Table 5) (S4 Table). While hsa-miR-146b-5p had a centrality

score of 10 it was still described as a breast cancer related miRNA in the literature. hsa-miR-

3671 was defined to have both high degree score and expression value in the trastuzumab

treated BT474 cells (Table 1). Table 5 showed the detailed information on the most central

nodes in both networks.

Clustering of the miRNA-miRNA networks clarifies the most regulated biological pro-

cesses. We performed cluster analyses on the networks to identify tightly connected cliques.

MCL cluster algorithm, that considers the weights of the edges, was used to detect the clusters

of the network.

In BT474 miRNA-miRNA network, 2.9 were selected as the minimum value for the edge

weights to be considered in the clusters. We investigated the first three largest clusters in the

network. The clusters comprised of miRNAs with opposite expression values, since the upre-

gulated and downregulated miRNAs regulated the similar pathways.

In the largest cluster (Fig 5), most of the miRNAs gathered around hsa-miR-216b and hsa-

miR-3064-3p with strong ties indicating similar biological processes. We also detected a pow-

erful connection between hsa-miR-216b, hsa-miR-3064-3p and hsa-miR-32-3p that was illus-

trated with thick edges indicating that they have more common pathways than the rest of the

miRNAs. The rest of the interactions within cluster were generated with the metabolic path-

ways such as path:hsa00982 (Drug metabolism—cytochrome P450), path:hsa00980 (Metabo-

lism of xenobiotics by cytochrome P450), path:hsa00500 (Starch and sucrose metabolism),

path:hsa00830 (Retinol metabolism), which were the main components of the aforementioned

triangle (Fig 5)(S5 Table).

Table 4. Lengths of miRNA target sites for the most targeted genes in the trastuzumab miRNA-miRNA

networks.

Gene ID Gene Frequency in BT474* Target site length (3’UTR length)**

SAMD12 19 8254 nucleotides

FAM9C 16 5260 nucleotides

UBE2W 15 7882 nucleotides

CCDC38 13 2341 nucleotides

MDM4 13 9420 nucleotides

CADM2 13 7664 nucleotides

Gene ID Gene Frequency in SKBR3* Target site length (3’UTR length)**

SAMD12 12 8254 nucleotides

ARL15 10 2650 nucleotides

TFRC 10 4699 nucleotides

CLLU1 9 2809 nucleotides

CADM2 9 7664 nucleotides

LPP 9 16193 nucleotides

*3’UTR; 3’untranslated region of transcripts

** Gene frequency; total number of the potential miRNAs that might target the particular gene seen in the

networks

https://doi.org/10.1371/journal.pone.0185558.t004
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Fig 2. The expression values of top 30 targeted genes in the network in TCGA breast cancer data.

(A-B) TCGA breast invasive carcinoma (BRCA) gene expression (AgilentG4502A_07_3 array) was obtained

by using 1247 samples in total. The expression values of the genes were given according to molecular

subtypes of breast cancer (Luminal A, Luminal B, HER2+, Basal Like and normal like). The expression levels

were indicated as in log2 lowess normalized ratio of sample signal to reference signal (cy5/cy3) collapsed for

each gene. In order to view the differential expression between samples more easily, the default view was set

to center each gene or exon to zero by independently subtracting the mean of each gene or exon on the fly.

The data sets were visualized by using Xena Browser.

https://doi.org/10.1371/journal.pone.0185558.g002
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In the second largest cluster (Fig 6A) the most central node was hsa-miR-4517, which was

connected to the other miRNAs through shared pathways. We also observed a strong relation-

ship between hsa-miR-3121-3p and hsa-miR-5692a. This connection and the rest of the total

interactions in this cluster were mostly controlled by cancer related pathways such as; path:

Table 5. 15 central nodes with the highest degree scores in trastuzumab treated SKBR3 and BT474 miRNA networks. All the nodes values were sta-

tistically significant with P-value <0.05.

Node name (miRNA ID) Degree centrality score in SKBR3 network Node name (miRNA ID) Degree centrality score in BT474 network

hsa-miR-3976 9 hsa-miR-3671 19

hsa-miR-548b-5p 9 hsa-miR-4474-5p 16

hsa-miR-4480 9 hsa-miR-559 15

hsa-miR-548d-5p 8 hsa-miR-4517 15

hsa-miR-3194-5p 8 hsa-miR-485-5p 14

hsa-miR-4259 8 hsa-miR-558 13

hsa-miR-519e-5p 8 hsa-miR-29b-2-5p 13

hsa-miR-4478 8 hsa-miR-150-3p 12

hsa-miR-4496 7 hsa-miR-411-3p 12

hsa-miR-4635 7 hsa-miR-526b-3p 12

hsa-miR-581 7 hsa-miR-93-3p 11

hsa-miR-10b-5p 7 hsa-miR-551b-5p 10

hsa-miR-769-5p 6 hsa-miR-5579-3p 10

hsa-miR-190a-5p 6 hsa-miR-146b-5p 10

hsa-miR-216b 6 hsa-miR-3121-3p 10

https://doi.org/10.1371/journal.pone.0185558.t005

Fig 3. The miRNA-miRNA network in SKBR3 cell. In SKBR3 cells, 73 trastuzumab responsive miRNAs are found to be

functionally relevant with each other. Each node represents a responsive miRNA and the nodes are sized by their degree

centrality scores. hsa-miR-3976, hsa-miR-548b-5p and hsa-miR-3194-5p are identified to be the most central nodes with

the degree scores of 9 and 8 (P<0.05 for each miRNA pair, red nodes:upregulated miRNAs, green nodes: downregulated

miRNAs).

https://doi.org/10.1371/journal.pone.0185558.g003
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Fig 4. The miRNA-miRNA network in BT474 cell. In BT474 cells, 150 trastuzumab responsive miRNAs are defined as

functionally relevant with each other. Each node represents a responsive miRNA and the nodes are sized by their degree

centrality scores. hsa-miR-3671 is the most central node in the network with the degree centrality score of 19 (P<0.05 for

each miRNA pair, red nodes:upregulated miRNAs, green nodes: downregulated miRNAs).

https://doi.org/10.1371/journal.pone.0185558.g004

Fig 5. The largest cluster in the BT474 miRNA-miRNA network. The most powerful interaction consisted

of the thick edges presented as a triangle (red) between hsa-miR-3064-3p, hsa-miR-32-3p and hsa-miR-

216b. The edges are comprised of the metabolic pathways that also dominate the interactions between the

other nodes in the complete cluster. The aforementioned pathways were shown in red boxes in left side. (The

edge weight minimum value = 2.9, P<0.05 for each miRNA pair, red nodes:upregulated miRNAs, green

nodes: downregulated miRNAs).

https://doi.org/10.1371/journal.pone.0185558.g005
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hsa04060 (Cytokine-cytokine receptor interaction), path:hsa04140 (Autophagy), path:

hsa04630 (Jak-STAT signaling pathway), path:hsa04622 (RIG-I-like receptor signaling path-

way) (Fig 6) (S5 Table).

In the last cluster (Fig 6B), a known miRNA with roles in various cancers, hsa-miR-26b-2-

5p, combined two groups of nodes, which included different shared pathways. The first group

was dominated by the pathways such as path:hsa05220 (Chronic myeloid leukemia), path:

hsa04010 (MAPK signaling pathway) and it was connected to miRNAs that have functionally

enriched in path:hsa04060 (Cytokine-cytokine receptor interaction), path:hsa04630 (Jak-

STAT signaling pathway) pathways (S5 Table)(Fig 6).

In SKBR3 miRNA-miRNA network, the edge threshold was also set as 2.9. and the three

largest clusters were examined in detail. The miRNAs with opposite expression values were

also observed together in the clusters of the network. hsa-miR-216b was again the most impor-

tant node in the first largest cluster (Fig 7). It was connected to its neighbor nodes through the

metabolic mechanisms. A strong connection detected between hsa-miR-216b, hsa-miR-200a-

3p and hsa-miR-513a-3p was illustrated by thick edges, which consisted of the pathways such

as path:hsa00053 (Ascorbate and aldarate metabolism), path:hsa00982 (Drug metabolism—

cytochrome P450), path:hsa00980 (Metabolism of xenobiotics by cytochrome P450), path:

hsa00830 (Retinol metabolism) (Fig 7) (S6 Table). As it was observed in BT474 cells, this

strong connection dominated the other interactions between miRNAs. Distinctively, hsa-miR-

216b was defined to be upregulated in SKBR3 cells, while it was downregulated in BT474 cells.

In the second largest cluster (Fig 8A), hsa-miR-3942 was found to be another hub node. It

was strongly connected to hsa-miR-298 and hsa-miR-10b through cancer specific pathways

Fig 6. The second and third largest clusters in the BT474 miRNA-miRNA network. (A) The most

powerful interaction consisted of one thick edge (red) presented between hsa-miR-5692a and hsa-miR-3121-

3p. The edges are made of the cancer related pathways that control majority of the interactions between the

other nodes in the complete cluster. The aforementioned pathways are shown in red boxes in left side. (B) In

the last cluster, hsa-miR-29b-2-5p (shown in yellow) has important role as a hub node to unite two different

groups of miRNAs that enriched in path:hsa05220 (Chronic myeloid leukemia), path:hsa04010 (MAPK

signaling pathway) and path:hsa04060 (Cytokine-cytokine receptor interaction), path:hsa04630 (Jak-STAT

signaling pathway) pathways (The edge weight minumum value = 2.9, P<0.05 for each miRNA pair, red

nodes:upregulated miRNAs, green nodes: downregulated miRNAs).

https://doi.org/10.1371/journal.pone.0185558.g006
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such as; path:hsa05212 (Pancreatic cancer), path:hsa05223 (Non-small cell lung cancer), path:

hsa05220 (Chronic myeloid leukemia), path:hsa04110 (Cell cycle), and path:hsa04666 (Fc

gamma R-mediated phagocytosis) (Fig 8) (S6 Table). We also found out that hsa-miR-10b was

one of the miRNAs previously identified to have roles in breast cancer progression. Based

upon the pathways shared by hsa-miR-10b, we might lead to a certain point about the func-

tions of its strongly connected neighbors; hsa-miR-298 and hsa-miR-3942 that are presented

as novel miRNAs in breast cancer. The rest of the cluster was also strongly controlled by cancer

pathways such as path:hsa05212 (Pancreatic cancer), path:hsa05223 (Non-small cell lung can-

cer), path:hsa04110 (Cell cycle), path:hsa4520 (Adherens junction) underlying the strong effect

of two main biological mechanisms that were potentially regulated by responsive miRNAs

(Fig 8, S6 Table). In addition, the last cluster (Fig 8B) was consisted of tightly connected upre-

gulated miRNAs and they were related to each other through path:hsa04810 (Regulation of

actin cytoskeleton) and path:hsa05200 (pathways in cancer) mostly (Fig 8, S6 Table).

Discussion

Recent studies showed that miRNA patterns were altered in trastuzumab treatment and associ-

ated with drug response. However, our understanding of the miRNA-mediated mechanisms

of action in trastuzumab treatment is still very limited, since the previous studies only identi-

fied the individual miRNA effects in trastuzumab responsive cell lines rather than explaining

the complexity of miRNA-regulatory mechanisms on the systemic level [18–23]. Herein, we

focused on discovering the molecular response of the cells to trastuzumab on the level of

miRNA-regulatory mechanisms. For this purpose, we constructed a homogenous network

model, which enabled us to define the interactions between miRNA pairs by emphasizing the

Fig 7. The largest cluster in the SKBR3 miRNA-miRNA network. The most powerful interaction is

consisted of the thick edges presented as a triangle (red) between hsa-miR-200a-3p, hsa-miR-513a-3p and

hsa-miR-216b. The edges are once again made of the metabolic pathways that also dominate the rest of

interactions in the cluster. The afermentioned pathways were shown in red boxes in left side. (The edge

weight minumum value = 2.9, P<0.05 for each miRNA pair, red nodes:upregulated miRNAs, green nodes:

downregulated miRNAs).

https://doi.org/10.1371/journal.pone.0185558.g007
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most shared biological processes and pathways that miRNAs were involved in trastuzumab

treated cell lines.

In this study, we built a homogenous network model that focuses on the relationships

between miRNAs by using pathways that their predicted targets were enriched. The homoge-

nous networks are more applicable to explain the relationships between single types of mole-

cules, which are trastuzumab responsive miRNAs in our case. Unlike heterogenous networks,

homogenous networks allow the integration of a property of a biological unit (e.g., pathways

of miRNAs) into the network by utilizing them as connectors instead of representing them

explicitly as nodes [43]. Our network model not only highlighted the interplay between

responsive miRNA pairs but also exposed the functional patterns shared by them. We identi-

fied the functional relationships at three different levels; including the investigation of the

most targeted genes, the miRNA-miRNA networks built by shared enriched pathways and the

clusters of miRNAs with joint functional properties in the network. Integrating different types

of analyses increased the significance of synergistic relationships between miRNA pairs.

The input data for the network analysis was obtained by microarray profiling that con-

tained 2006 miRNAs from the updated version of miRBase 19. The profiling was performed in

SKBR3 and BT474 cell lines defined as HER2 overexpressing, trastuzumab responsive cell

lines. The microarray analysis showed the distinctive expression profiles between trastuzumab

and PBS treated breast cancer cell lines. The strong difference in the expression profiles of

treated and non-treated cells was consistent with the findings of previous studies [18,19].

We followed a framework that helped us to yield our miRNA-miRNA networks by only

focusing on the statistically significant miRNA pairs with the most reliable predicted target

genes and enriched pathways. We found out that the most targeted genes in our networks

Fig 8. The second and third largest clusters in the SKBR3 miRNA-miRNA network. (A) The most

powerful interaction is consisted of one thick edge (red) presented between hsa-miR-3942-5p and hsa-miR-

298. The edges are made of the cancer related pathways that control majority of the interactions between the

other nodes in the cluster. The afermentioned pathways are shown in red boxes in left side. (B) In the last

cluster, the interactions are determined by the upregulated miRNAs mostly and they are related to each other

through path:hsa04810 (Regulation of actin cytoskeleton) and path:hsa05200 (pathways in cancer) (The

edge weight minumum value = 2.9, P<0.05 for each miRNA pair, red nodes:upregulated miRNAs, green

nodes: downregulated miRNAs).

https://doi.org/10.1371/journal.pone.0185558.g008
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were defined to possess longer 3’UTR binding sites. Additionally, we figured out that majority

of them (24 out of top 30 genes in SKBR3 network and 23 out of top 30 in BT474 network)

were differentially expressed in invasive breast cancer tissues. In a recent study, Cheng et al.

demonstrated the correlation between miRNA regulation and evolutionary conserved genes

with longer 3’UTR binding sites [42]. When we consider their potential density of binding

sites in the 3’UTR region, those hub genes with high numbers of connection might be impor-

tant key players of miRNA-mediated regulation in trastuzumab treatment. The literature

review also showed that most of them have important roles in cancer progression. Among

those, UBE2W plays an important role in the coordination of the attachment of the ubiquitin

molecules to the existing proteins. In addition, a literature search showed that FAM9C was

identified to have several roles in cancer development such as promoting the tumor growth in

the liver, while ARL15 was found to regulate adiponectin levels, which were dysregulated in

cancer [44–46]. However, the most targeted gene in both cell lines, SAMD12, was not identi-

fied in cancer previously. Nevertheless, it is explicitly take place in the cohort of highly targeted

genes; therefore it might potentially have similar functions with the other most targeted genes

in the network.

For each network, we investigated the nodes with high degree centralities since they are the

key players of the system. In SKBR3 miRNA-miRNA network, hsa-miR-3976 was the most

central node and it was followed by miRNAs such as hsa-miR-10b-5p, hsa-miR-190a, which

were defined to have important roles in breast cancer metastasis and tumor growth [47,48].

Moreover, in the BT-474 miRNA-miRNA network, hsa-miR-146b-5p was one of the most

central nodes and it was described as a potential breast cancer related biomarker in the litera-

ture [49]. This showed that our network model was able to capture the prominent miRNAs in

both trastuzumab treated cell lines and the presence of the central nodes in the top 20 differen-

tially expressed miRNA list makes them reliable regulatory candidates.

Analyses of the clusters proved that some of the highly related miRNAs were brought

together with the help of their common biological processes without providing any additional

information. We discovered that the largest clusters were connected through metabolic and

cancer related pathways. The most powerful interactions within the first clusters were formed

as triangles by certain miRNAs in which most of their edges belonged to metabolic pathways.

This might indicate the strong effect of miRNA regulation upon the metabolic machinery in

trastuzumab treatment. Among the members of the leading triangles, hsa-miR-216b was an

important miRNA in particular, since it was previously associated with breast cancer and

found to be common in both cell lines [45]. The interaction shaped by hsa-miR-216b led us to

suggest that unknown miRNAs such as hsa-miR-3064-3p and hsa-miR-32-3p of these clusters

to be considered as potential candidates with important roles in breast cancer treatment. To

clarify the importance of these two miRNAs the trastuzumab responsive genes were identified

by in silico analysis in FFPE samples obtained from long-term survivors having early progres-

sion to trastuzumab (GSE44272) [50] and three of the responsive genes were found to be com-

mon with the potential targets of hsa-miR-3064-3p and hsa-miR-32-3p. These target genes,

YWHAE (tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsi-

lon), RPL37 (ribosomal protein L37) and AK2 (adenylate kinase 2) were found to have func-

tions in apoptosis, cell cycle and metabolic pathways. These results underlined the regulative

roles of two miRNAs on the molecular markers of trastuzumab treatment. Moreover, hsa-

miR-26b-2-5p was a hub miRNA linking all the other members of the cluster whose edges

were represented by cancer related pathways.

These results might not only clarify the functionally relevant miRNAs in the drug treat-

ment, but also signify the presence of two main biological groups, which are potentially driven

by trastuzumab responsive miRNAs; metabolic and cancer related pathways. Further

miRNA networks in trastuzumab in breast cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0185558 October 5, 2017 17 / 21

https://doi.org/10.1371/journal.pone.0185558


functional characterization of prominent miRNAs from the network analysis by in vitro or in

vivo approaches may contribute to the miRNA mediated regulation in trastuzumab treatment.

Furthermore different trastuzumab treatment protocols (i.e. incubation time, concentration

and sensitivity of the cells) could provide better understanding of the roles of trastuzumab

responsive miRNAs in treatment through the comparison of miRNA-miRNA interactions

among the various conditions.
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